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Bayesian solutions of tracking problems that invoLve measurement associa,
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time step. However, this approximation may destroy valuable infoymation,
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In this Report)two new algorithms for rsducinq Gaussian mixture iisitr•lu-
tions are presented. These techniques preserve the mean and covariancv. of the
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The two algorithms have been. used to contrl -the *j-owth of components which
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1) INTRODUCTION

A tracking filter is an algorithm for estimating the position .(and possibly

also the velocity or other factors) of an object from measurements of a sensor

such as a radar. In general the sensor will produce measurements from the

required object and also from random noise interference, clutter and other

objects1. Usually it is not possible to distinguish with certainty between the

. useful measurements from the object and other unwanted measurements. In these

circumstances the computational requirements of the full Bayesian solution to

this problem rapidly increase as tracking proceeds. This Report is concerned

with methods for containing the computational requirements within specified

bounds, while minimizing the consequent performance penalty.

It is usual practice for the computational demands of the tracking filter

to be controlled in two stages on every occasion that measurements are received

from the sensor. The first of these is a coarse acceptance test which is applied

before new measurements are processed, while the second stage is applied after

processing. The acceptance test is effectively a tracking gate which rejects any

measurements which are very unlikely to originate from the object of interest,

and since it is applied before processing it is computationally inexpensive.

This type of test is well known (see Refs 2, 9 and 11) and is widely applied to

measurement association problems where ambiguities may exist. Therefore the

acceptance test will not be considered further in the main text of this Report,

although its application to the simulation example is described in Appendix D.

After processing of the accepted measuremthnts. is complete, it may be necessary

to approximate the solution to avoid an excessive computational load when sub-

sequent zeasurements are incorporated. Uolike the acceptance test, this second

"stage of control may result in a significant modification of the complete solu-

tion. Hence careful conoideration should be given to this approximation in

order to minimize the effect on filter performance. The design of such reduction

algorithms is the main subject of this Report.

In section 2 the Blayesian solutioa of the tracking problem is briefly

discussed afd a set of requirCments for a reduction algorithm is formulated.

Previous approaches to this problem are also discussed. The design of reduction.

* algorithms is reported in sections 3 to 5, and in section 6 the performanca of

* the algorithms is assessed by simulation for a particular tracking example.

This assessment also compares the performance of the proposed algorithms with

the pooolar Probabillstic Data Assoclation Pilter 3 (PWuA) approach.zkg

| .0.
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2 MIXTURE DISTRIBUTIONS AND THE REQUIREMENTS OF A REDUCTION ALGORITHM

Bayes theory provides an ideal approach to the tracking problem. In this

approach the probability density function (pdf) p(x) of the state vector x

at time tk is constructed using all available information. Here x is the

vector of parameters to be estimated. When further sensor measurements become

available at time tk+1 , this-information is used to update the pdf using Bayes
theoremi. .In principle, an optimal estimate for any desired criterion, such as

minimum mean square error, may be obtained from the pdf p(x)

The solution of tracking problems involving measurement uncertainty leads

to mixture distributions for the required state vector. A mixture distribution

has a pd -of the:form:

where p.(x) is a Component 'pdf and a. -is a probability associated with the

ith. c-omponent such that . -

8>O and *I.: ...

For the tracking problem each component of the mixture corresponds to a possible A

track, and 0 is the probability that the assumed wasuremnt history for

track i is correct. If the equations of motion of the object to be tracked

are linear with Gaussian disturbaeeso, and measurements originating from the

object are linearly related to the state vector but- corrupted by CGutisian

measurement noise, then each of the mixture ceponents is a Gaussian distribution

(see Refs 1, 2 and Appendix C1, where this result is derived for a particular

tracking problem :

..- . ' •

whore is the mea.n of the Gaussian distribution and

P, is the covariance matrix.

In this case p(x) is. known as a Gaussian mixture (see get 6) and each couponent

may be thought- of as the otpt of a Kalmn tracking filter.

• •. !. 'V
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thfWhile uncertainty persists, the number of components in the mixture for

the full Bayesian solution will grow as tracking proceeds. The coarse acceptance

test may be employed to cut down the number of feasible measurement histories to

consider (and so the number of components) by rejecting very unlikely measure-

ments. However if more than one measurement is passed by the acceptance test

at each time step, the number of mixture components will still increase. Since

every component must be propagated at each time step, to implement a tracking

filter based on the Bayesian solution, it is essential to control the growth in

the number of compcnents. Here, it is considered that the control should be

exercised by a reduction algorithm which fulfils the following requirements:

(i) The approximation should result in another Gaussian mixture. This

is necessary to preserve the basic tracking filter algorithm which is a

bank of Kalman filters.

(ii) The algorithm should allow the maximum number N of components
T

after approximation to be chosen as desired.

(iii) Whenever possible, reduction should be achieved without modifying

the 'structure' of the distribution beyond some acceptable limit. Con-

versely, to avoid retaining unnecessary components, reduction should con-

tinue until this limit is reached, so that the approximation may contain

less than NT components.

(iv) Intuitively the approximation should preserve the moan and

covariance of the original mixture.

(v) The reduction algorithm should be computationally efficient, even

when the original mixture consists of a large number of components (for

example over 100), each with a different covariance matrix.

Of these requirements, number (iii) needs further commont. Ideally the

reduction algorithm should attempt to maintain some level of filter performance

within the limit of NT components. A tuitable performance measure would be

the probability of losing track. Unfortunately the relationship between this

performance measure and modification of the mixture distribution cannot be easily

determined (but see section 6). However -. a 1 Akely that the performance

penalty will be related to the extent to which the approximation modifies the

structure of the distribution. Hence requirement (iii) is witten in terms of

* distribution structute (see below),

i
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A number of techniques for controlling the growth of the mixture distri-
3.

bution have been reported. A popular and economical approach is the PDAF in

which the Gaussian mixture is approximated by a single Gaussian component at

every time step. However if well spaced components are present, the approximation

may destroy important structure in the distribution. Methods which allow for the

retention of more than one component include the N-scan memory filter of
1 4

Singer et al , and the direct approximation approaches of Alspach and Lainiotis
5

and Park . None of these techniques ensures that the maximum number of components

in the approximation is always within a specified limit, and Ref I does not use a

direct measure of mixture structure. Ref 4 assures that all components have the

same covariance and the method of Ref 5 would be very time consuming.

In the following sections two new mixture reduction algorithms which meet

all of the above requirements are proposed. These algorithms operate by merging

similar components together. In the first of these aigorithms, the Joining

Algorithm, a single pair of the 'most similar' components are merged at every

iteration. In the second algorithm, the Clustering Algorithm, groups of similar

components are merged at each iteration. The second method should be computation-

ally more efficient, but with the former, the reduction process can be more finely

regulated so that over-reduction is avoided. Both techniques are based on the

same measure of mixture structure modification (requirement (iii)), which is

derived from a decomposition of the mixture covarianceo aatrix.

3 MIXTURE STRUCTURE: THE COVARIANCE MATRIX

The covariance matrix P of any mixLwre distribution with N components

mty be decomposed iito two contributions, W and B (see Appendix A.l):

P "W÷

N

wher~e VU

AT

2•..

--

Sv, 'it the mean of the distribution, And

Jai 0
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.l , P. and B. are defined in section 2.

The matrix W may be interpreted as the contribution from the covariance 'within'

each component of the mixture, while B may be interpreted as the between com-

ponent contribution due to the separation between the mixture components. B and

1W are both symmetric matrices, W being positive definite and B being positive

semi-definite.

Suppose that the mixture distribution is approximated by merging several

components together. If C is the set of subscripts of components to be merged,

then in order to preserve the mean and covariance of the mixture, the probability

mass P, the mean 0' and the covariance P' of the new component should be

"chosen (see Appendix A.2) as:

T CI c

P' 1 / 1i ÷ ,,~ "'T (1)

Although the overall covariance matrix P. is unchanged, this merging of

components results in a loss of betwoen component covariance B which is balanced

by an increase ino . More precisely, the difference L W U' - V is a positive

.semidefinite watrix given by (see Appendix A.3):

-, . x
Ut ied

Thjis shift of covarianve ( toon U to W provides a us•tiu1 measure Of the

change in the structure of a mixture distribution when comonents ore combined.

(A similar matrix dccomposition has been used in Cluster Analysis, which is con-
6corned with the grouping of data poinits into natural clusters -see t1and

4 AVE JOINING ALGORITHM

Ideally the final partition of components into sets for metrging should be

such that the increase in Soto cost function is minimized. Iowever, to reduce A

the mixture from N to N cocponents, this could involve the evaluation of the ,

-4 criterion for every possible partition to identify the minimum. Such a procedure 4
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for a number of different values of M would be far too time consuming and so a

suboptimal approach has been adapted from the agglomerative methods of Cluster
6Analysis (see Hand ). In this approach, which we call the Joining Algorithm,

a pair of components are merged at every iteration of the algorithm. The com-

ponents for merging are chosen to minimize the increase in the chosen cost function

at each stage. Clearly there is no guarantee that the final partition from such

a procedure will achieve the smallest possible value of the cost function.

To implement the Joining Algorithm using a cost function based on an

increase in the within component covariance, we require a suitable scalar measure.

If components i and j are merged, the increase in W is given (see

Appendix A4) by:

L ij Bi + 'B(iýj(i U

One possible measure is the trace of L which is the squared Eucliuean
distance between component means modified by the factor B.8j/(8. + .)8. However

this has the disadvantage that it is dependent on the scaling of the elements of

the state vector and so is problem dependent. This difficulty is avoided by

using the Mahalanobis distance (see Ref 6) to give:

Witich is related to L by (see Appendix A.5)

This measure is itivariaot under ill non singular linear transformations of

the state vector (aee Appendix A.6). At each iteritiou of the Joining AlgoritLhm,

the tuo COVOfeats uhich are closest -in the sense of the distante measure,

equation (2)1 are combined to iom a nmw co6pwent deflued by the relations,
equation (1)•• '

the minimum value of the distance measure at each iteration is an indicator

of the change in distribution structute resulting from the mering of the two

closest components. it is Showm in Appendix. B that this minitm distance CZ

increases mwotouically as reduction proceeds and so each wergiag operation

'4'...+,:
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increases this measure of structural modification. Thus if a threshold T

defining the maximum acceptable modification to the distribution is specified,

approximation should proceed until the minimum distance exceeds this threshold.

In choosing a value for the threshold T * it is useful to note (see Appendix
2A.7) that the distance d. is bounded:
13

d.. < dim(x)

Simulation studies indicate that a value of

T - 0.001 dim(x)

retains sufficient components to give, on visual inspection, a good approximation

to the mixture. At each iteration, the algorithm determines the number Na of

remaining components, excluding the set of smallest components with total prob-
2ability mass (ic the sum of their 8 weights) less than BT * If d2. exceeds

T bef.-.e NR has been reduced below the specified maximum N T , then approxi-

mation continues beyond the acceptable limit of modification. 1he purpose of

'T , which has been set to 0.01, is to avoid wasting effort on grouping insig-

nificant components.

2To implement the Joining Algorithm, a =trix (6'..) containing the distance
between every pair of components in the original mixture is evaluated using

equation (). Nt the matrix W.) is symmetric and d . so that only

the upper triangular part of the matrix need be evaluated. At each iteration

the smallest element of the matrix (for i < j) is found and the correspondiag

pair of cemtponents are merged using the for.ulau (1). Thou row j and column j

of the distance uAtrix are deleted, the- new couponenc is written into storage

location i , and row i and coluzmn i of the matrix are revaluated using (2).

Again all processing is confined to the upper triangle of thle matrix. Note

"that since the mewrging of compuoents preserves the covarianco matrix P , only

one "trix inversion suffices for all distance evalutions. Algorithm itratio

coitinue until the stopping •criteria are satisf ied (see the flow diagram of the

algorithi given in Fig 1). Th. storage requirement for the algorithm is O( ),

the number odf distance evaluation is 0(Nl) and the number of cmarisons is,

u)(N3) where N is the oumber 'f components in the original mixture.

Pigs 2 to 4 show an example of mixture reduction with the Joining Algoritto '. A
"for a two dimensional distribution. Note thAt for tLý - 10 the approximation

•0 appeArs to be very good, although for T - 4 several uiportant components have1, 0 been combined.
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5 THE CLUSTERING ALGORITHM

The second algorithm is based on the proposition that the mixture com-

ponents with the largest a weightings carry the most important information.

Thus starting with the largest component, this algorithm gathers in all surround-

ing components that are close to the principal component. Subsequently the

largest component of the remainder is selected and the process is repeated until

all the components have been clustered. This is called the Clustering Algorithm.

The distance measure chosen to represent the closeness of component i to

the cluster centre is defined by

E_ (3 t U. -i -c _(Li i

where B c c and P are the parameters of the principal component, and B.

and ui are the probability mass and mean of the ith component. This is the

same as the distance measure d.? of the previous section, except the distance
%j

is norualized to the covariance of the cluster centre rather than the complete

mixture. Any com•ponent i for which D? 1 i eetda lse ebr
2.

"mxue Aycmoetifrw ichD < TI is selected as a cluster metubar.

Tle threshold T1  defines the acceptable modification to the distribution.

In Chosing T" , it is helpful to first consider the measure D

4eoiaed by;

if the criterion for elusteting a Component i Uore 0, < T1 , then any too-

portent i whose mean vete to fall Within the hyparellipsoid d-fitned by T1

Uould be clustored. This hyperellipaoid is a contour of constant probability

density of the ,pri•cipal coeponent, and the proutrtion ok probability mass

enclosed is a measure of the suleetivity of the clusteritng operation. If T

Vere chosen so that only a snatl proportion, say iZ, of the probability eass of

the.eluster centre Uwre enclosed, then the structuro of the distribution Ahould

be little altered by clustering. flowever i is independent of the probability

mass (0i) of the componnt, and intuitively, merging a large cocponent would

have a greatOt effect oe the fixture than merging a small component, The
o•difying factor 6.1g. * A8 ) biases this distance so that small components

ate wore easily clustered uhile large coumonts retain their individuality. It

is suggested that the threshold for

:i
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2 i +iCc D)2
8+

1 iC

should be chosen so that small components with 0 weights less than 0.05 are

more readily clustered while components with B weights exceeding 0.05 are

clustered less readily. Fig 5 shows that the contour

Bic
____ ~0.05

""i + S

is close to the line a. = 0.05 inside the region of interest, except when 8.
3. 1

is nearly equal to Bc Thus it is suggested that to give a good mixture
C 2

approximation, the threshold for D0 should be set to
1

T 0.05T1

where T; defines the hyperellipsoid containing only IZ of the probability
2

Mass* (T'; can be found from tables of X

Each cluster of components (som clusters may consist of a single cmponent)

is apuroximated by a singlie Gaussian def-ined by equation (0). Clustering proceeds

until the probability wss of the unclustered cotaqonents is less than BT # As

for the Joining Algorithm, the purpose of B , which is set to 0.01, is to

avoid wasting effort on clustering insignificant cocvouents. If the number of

clusters is less than or equal to ,V Clih untclustered components are deleted

acid approxiwtiti is cumlete; othervise further reduction is necessary. This

is achieved by r-peating the clustering proceduri aon thc firet approxicution,
but vith. th' clustering threshold incrooented by AT * This clustering .operatirn

is iterated until the necessary reduction has beea effected. 'The choicea of the

increment AT is i compromise between the number of iterations required and th.

possibility of clustering Wre c64vnauts than necessary. In this study, the
value of AT is L isod;

AT " 0.05 AT'

vhere V' ' AT' defines the hyperallipsoid which cootains 61 of the probmbility,-t!: prnia,•MOa. ot e esn

d• .mass of the principal component. (Simulation work has shown thi' to be a reason-

able comprooise.) Howver an override is provided whih nay itncrease the cluster-

ing threshold further to ensure that at least ione c oneat is clustered on .ach 'S

iteration. A floo diagram of, the algorithm is giveu in Fig 6.
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The computational cost of this algorithm depends on how many iterations are

required to adequately reduce the mixture. It is most efficient when all approxi-

mation is accomplished within a single iteration, which required between N and

NM distance evaluations and comparisons, and M matrix inversions to reduce the

mixture from N to M components. In the worst case when only one component

is clustered on each iteration, the number of distance evaluations and comparisons
3 2is O(N ) and the number of matrix inversions is O(N2) . The algorithm

requires minimal extra storage above that needed to hold the mixture components.

Figs 7 and 8 show the result of applying the Clustering Algorithm to the
mixture shown in Fig 2. Note that for N = 10 , the approximation is very

T
similar to that produced by the Joining Algorithm (Fig 3). However for NT =4

there are clear differences between the approximations from the two algorithms

(Figs 4 and 8).

6 COMPARISON OF FILTER PERFORMANCE AND THE EFFECT OF VARYING NT

6.1 The tracking problem

The main object of this simulation is to compare the performance of tracking

filters using the Joining Algorithm,- the Clustering Algorithm and the PDAF approxi-

mation. The performance of these filters has been assessed for the problem of

tracking an object moving in a plane, using measurements produced by a sensor

(the same problem is considered in Ref 7). The simulation is in three parts:

(i) the generation of the object trajectory and the sensor

measurements;

(ii) the implementation of the tracking filters;

(iii) the assessment of the filters' performance.

8Object trajectories have been generated from an a-$ model This model

has been widely used in tracking problems as it is simple, while providing an

adequate trajectory representation for many practical cases. The trajectory

described by the model is a variation about a constant nelocity course, whose,

magnitude and direction are defined by initial conditions. The deviation from

this mean course is controlled by the variance q of the model driving noise.

. .The a-0 model is defined by the following equation:

gil- .: " • " .. ,71
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It t2
1 At 0At/2 0

0 1 0 0t 0.
'::•-" + = -Xk + Yt12wk (3).•,-t-00 0 1 A 0 At/

0 0 C0 1 2 (3

where the state vector xk represents the position and velocity of the object

at time kAt •

-T

At is the time step between measurements, and

Wk is a 2 x I vector from a Gaussian random sequence with zero mean and constant

covariance

S- (2 0)q0

Thus, to gdnerate a trajectory I-ij ' Gaussian random numbers of variance q

were fed through the recurrence relation (3), starting from some initial

condition x

At er, ..t '..'me step a set of Cartesian position measurements have been.

generated to simulate sensor measurements. It is assumed that the probability

P of detecting the object is unity, so exactly one measurement in each set

originates from the object. This is called the true measurement and it is a

Gaussian perturbation about the position of the object. It is generated from

the. state vector using the equation

+ (4)
!k

where v a a 2 9 1 vector of Gaussian measuremenat noise with zero mean and

constant covarianuce

S•.... . ..................... .... ,....', ,.:::.,:

r )ý
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The other measurements are independent of the object and are called false

measurements. Tbeo-" are uniformly distributed over the sensor surveillance

region, witsp density p per unit area. At each time step, the surveillance

region of the sensor is arranged to be sufficiently extensive to include the

object position and the acceptance regions of the filters, while track is

maintained. False measurements were simulated by generating AkP pairs of

uniformly distributed random numbers with appropriate scaling; A k being the

area of the surveillance region.

At each time step, every simulated measurement is passed to the tracking

filters which attempt to estimate the current value of the object's state vector.

The following information is available to the filters:

(i) the value of the initial state vector x0

(ii) the model of the object motion, equation (3);

(iii) the relationship between the state vector and the true measurement,

equation (4);

(iv) the statistics of the false measurements, the true measurement

noise and the andel driving noise, including the values of p. r and q ;

(v) the detection probability PD of the sensor.

The tracking filters do not know;

(a) the values of the state vector xk , or the noise vectors 2k

and .k at each time step (k + 0);

(b) the identity of the true measurement,

As indicated, three filters have been implemented: the Joining Algorithm filter

(JAP), the Clustering Algorithm filter (CA) and the PDAP. As already discussed,

each of these filters is based on the Bayesian solution of the above problem

(see Appendix C) and each uses the toarse acceptance test described in Appendix D.

The only difference between the filters is the mixture reduction algorithm

"eVloyed. However for the PDAF,% which approximates the mixture by a single

Gaussian component, a full propagation of all 'COMIoente is unnecessary and a

very. efficient filter algorithm way be used3 .

The performance of the filters vas. assessed by measuring how long each of
tht three filters was able to maintain track on the object, e the track lifetime .

Each filter vas allowed to continue tracking the object until track was lost. A

track vas deemed to be lost. if eitber -of the folloWing Criteria W6We satisfie.40

• ': " " "• + " - -

S • m l ~ m• • pamm•,i ew lm' e • Imm qqwm •~ mr ~ m pm•amti k • pm • I m'
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(a) The true measurement 'is rejected by the acceptance test for five

consec.utive time steps.

(b) IxIk -XkI > 10 Oxk or yk -ykI > 10o forfive

consecutive time steps,

where xk ' Yk is the filter estimate (the mean of the posterior

distribution) of the object position at time step k

k y Y is the actual object position at time step k , and

axk and ayk are the standard deviations of the position
estimates of the equivalent Kalman filter (ie the optimal filter
for the same problem but with p - 0 ).

6.2 Choice of problem parameters

To analyse this tracking problem it is convenient to normalize the

variables, so that the unit of time is At and the unit of distance is vrr

Then the uon-dimensional form of the state vector is

x ( *At ~ ~ T

k

IZ thi target model and measurement equations are written in this form, it can

be shown that the statistics of the problem are completely described by three

u~a-mimensional parameters.

(i) I the ratio uhich determines the values of the filter gains
. t 0

for the standard a-t VIter , w in the absence of false measurements.

As this paramqttr increases. the a- filter becomes more respotiive to

position measurements.

(ii) or , the eypected number If false measurements falling wi•hic a

square whoss aide is one standard t;eviation of the measurement exror.

'(iii) rD the detection pvobability, assumd zo be unity.

Since the initial state vector is aspumed to be known perfectly, the filter per-

f!Orm••ce in ot- lized co-ordinates should only depend on these three r itameters.

2 (This is because the problem may be written as the estimation of the d,.viation

about the nominal constant vellcity course defined by the initial state vector.)

92.. . .,~
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All simulation results reported here are for a single point in this

parameter space:

gAt'
r

pr =0.012

P-
D

These values have been chosen to illustrate the possible improvement in t :acking

performance of the new reduction algorithms over the PDAP. However, it is

believed that the region of the parameter space where there is a significant

improvement is extensive, and a full investigation of filter performance over

the space will be reported separately. Another factor in the choice of the above

parameter values was a requirement for modest track lifetimes, to avoid excessive

computation costs.

One hundred object trajectories with associated measurements were generated

so that the mean track lifetime and the distribution of lifetimes could be

estimated. The initial object position was taken as the origin and the initial

speae was 10/r/A .Teiialhading of the object was chosen randomly for

each trajectory. For the chosen problem parameters, the equivaleut Kalman filter

:rapidly reaches steady state conditions,, and the standard deviation of tile posi-

tion error on one of the co-ordinates approaches within 1% of its final steady

state value after only four time steps. Also if the track of the object is

estimated by assuming a constant velocity course and extrapolating from thle

initial perfect data (io ignoring all measurements),, the number k of time steps
for the standard deviation of the error on ouie of the co-ordinates. say x , to

exceed 10 o k(see track loss criterion Wb) is 7. These two figures provide
'a useful timescal..whea considering the results of the simulation.

6.3 -Results

6.3.1 Avqraga number of tLime steps to track 1084

fig 19 shows the average number N of time steps until track loss as a
function of NT *for filters Using the Clustering Algorithm and the Joining
-Algoritisa vith threshtolds set to the valjuefs given in sections 4 and S. N I

corresponds to the spe4cisl case of the POO1~ and celarly the filters whlich retainjmore thin one mixture component perform better titan the PDAV,. The Joining
Al ithm, filter gives slightly larger values of Ni . than the CLusteriusAVE

Algorithm. possibly due to the settings. of T. and -
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Also shown in Fig 9 is the' filter performance for the JAF with T = 0, ie
with the acceptable modification check switched off. Note that the original

setting of T for the JAF does not significantly degrade the filter's perform-
ance, and that the performance for all three cases shown in Fig 9 is similar. A

For N < 10, NAV rises approximately linearly with NT , while for NT > 10t

NAVE is nearly constant. For the JAF with T 0 and NT very large, the

mixture is not subject to approximation, and so this constant level is the

optimal value of N
AVE

Fig 10 shows the average number of mixture components before and after

reduction for the 'hree cases of Fig 9. Comparing Fig lOa&b with Fig 10c, the

effect of the acceptable modification check, defined by T or T , in

regulating the number of components for the large values of NT is obvious.

For small values of NT , the approximation for all three cases is principally
Scontrolled by N T itself. For this example, T1I and T become the main

regulators of the approximation at about NT - 10, so the acceptable modification

check appears to select the minimum number of components for near optimal per-

formance. Clearly this cannot be guaranteed for other tracking problems, but

since the thresholds were not specially tuned for this simulation, the perform-

ance with other problems may not be far from optimal.

For an interpretation of these results, it is useful to view the generation

of mixture components as the filter's way of keeping options open when the choice

of the true measurement is uncertain. First consider the optimal case when the

mixture is not approximated. In this case, track will still be lost (according

to the criteria of section 6.0) when components corresponding to false measure-

meats are given a high probability weighting (0) through a chance event. Vor

instance, a manoeuvre by the object under track might coincide with the produc-

tion of a false measurement on the original heading, causing the filter to give

-a high weighting to the false measurement. Several such occurrences could lead

the mean position estimate away from the actual object position so satisfying

the track loss criteria. (Note that the average track lifetime depends on the

track loss criteria.) Clearly the probability of such occurrences is likely to

increase with the. 'difficulty' of the tracking problem, for example if the

density p. of false weasurements were to be increased. Thus, in agreement with

intuition, we expect the average track survival time NAVE to decrease with

increasing problem difficulty for given (sensible) track lost criteria,

I .I".... -
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Now consider the effect of the reduction algorithms. Even without approxi-

mation, at any time step, many components of the distribution are almost identical

so that the complete mixture distribution appears to consist of only a limited

number of clearly distinct, significant components. For example, the distribution

shown in Fig 2 comprises 37 components, although many of these are almost ident-

ical. The reduction algorithms attempt to combine the most similar components

and if this can be accomplished without merging the significant distinct com-

ponents (see Figs 2 and 3) little degradation in tracking performance is to be

expected. However if the number of components retained falls below some critical

level, these key components will be merged and tracking performance will deterio-

rate progressively as the permitted number of components is reduced. In rhe.

current example NT 10 appears to be the critical level at which tracking

performance begins to degrade.

6.3.2 Distribution of number of time steps to track loss

In the previous section, the average track lifetime was discussed. In this

section we consider the distribution of track lifetimes about this mean. To

illustrate the distribution and to compare the performance of the CAF and JAF

for individual replications, the track maintainence times have been plotted in

Figs 11 to 13 for NT a 2, 4 and 30 respectively. In these diagrams each point

corresponds to a single replication, and the X and Y co-ordinates of the

point are the time steps at which the JAF and CAF (with original threshold

settings) lost track respectively. So points falling on the X - Y line indicate

that both filters lost track coincidently. For large values of NT (og NT v 30,

Fig 13), the performance of the two filters is remarkably similar for the

majority of replications. The few replications biasing NAVE in favour of the

JAF are obvious. For small values of NT (o0 N f 2, Fig 11), the points are

scattered further from X a Y, although NAVE is almost identical for the two

filters. These results bear out the observation that the mixture approximations

produced by the two reduction algorithms are usually very similar for large NT ,

w hile for small NT there are often clear differences.

Figs 14 and 15 show histograms of thedata points from Figs 11 and 13; ia

* for the track lifetimes for the JAF and CAP with NT a 2 and NT - 30. It can be

-seen that those track lifetimes exceeding .20 tima steps can be well fitted by aa

eup•oential distribution of the form:.

i. • :i•! .
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(0 otherwise

where .t +a) is the average lifetime of tracks which survive for at least

t 20tim steps. This is cofredb 2 test, the epntilhypoth-

esis is only once rejected at the 5Z level of significance for any of the 24 sets

of replications. This exponential distribution indicates that after 20 time

steps, the probability of losing track is independent of track lifetime, ie

'after an initial transient the filters reach steady state conditions. The value

r - 20 was chosen by examining the transient behaviour of the equivalent
Kalmau 'filter (see last paragraph of section 6.2) and by inspection of the

simulation results. The distribution parameter a may be interpreted as the

average-nuimber of time steps that a track will survive in steady state conditions.

Esti~mates 'of 'a are shown in Fig 16. These values are slightly greater than

:-T E20. -.as tracks surviving for less than 20 time steps are excluded.

6.3s,3 Computation time

ri 7shows the average cpu time T AVE for the filterst efr

single'time step. The time scale is normalized to the average Cpu time for a

s9nle PDAP time step which, for the data simulated here, was 1.12 ms on a
Cray IS computers.-The computational effort is divided between the propagation

of mixture components or tracks (see Appendix C) and mixture reduction. For

the'two filters with the original threshold settings (Fig 17aft), TAV falls

:rapidly to nearly constant values for NT > 10. Also for low values of NT most

time is spent reducing the mixture, and as NT increases more time is required

for, track propagation while the mixture reduction time decreases. This is

explained by Fig.10: the initial high-values of T are due to time spent
AVE

reducing large mixtures which result from inadequate approximations at values

-of NT 6. Except for the case NT 6, the JAF was more time-consuming than the

CAusually by about 501, and as expected, the execution times for the filters
veto io All cases considirably greater than the PIM. However for NT > 10, the

eight-fold increaseiln execution'time for the CAP may well be an acceptable price 4

for. thze perf~ormae improvement off ered by this filter.

The time taken by the JAP with T w0 is shown in P41S 17c. This clearly

sosthe value of "the Accpable modiiicatio lick in hrdcin lh s
Inw accepe ch the rdcinalgoritms
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for the very small improvement for NT > 10 over the filter with the original

threshold settings, there is a large increase in processing time. This extra

time is required for the propagation and reduction of the extra tracks generated

when the full NT components are retained for NT > 10 (see Fig 10).

7 CONCLUSIONS

(1) Two new mixture reduction algorithms for uncertain tracking have been

developed. These algorithms have been applied to the optimal filter for tracking

an object in uniformly distributed false measurements to produce two practical

tracking filters: the Joining Algorithm filter (JAP) and the Clustering Algorithm

* filter (CAP).

(2) For the chosen simulation example (an object moving according to an az-8

model) these filters give a substantial performance improvement over the popular

PDAF filter: average track survival time (from an initially perfect track) may

be increased by a factor of 8.

(3) However the computation times for these more complex filters are also

greater than the PDAF: a factor of 8 for the CAP and a factor of 13 for the JAR.

Also computer memory requirements are increased, particularly for the JAP.

(4) The simulation indicates that the minimum computation time and near

optimum performance are obtained when satisfactory mixture approximation (defined

by algorithm thresholds) is achieved within the maximum number of components
allowed. If the permitted number of mixture components is reduced-below some
critical level, tracking performance will deteriorate.

(M Under th~ea conditions1, the track survival times for the two filter. were

identical on at least 852 of the replications. This suggests that filter perform-
ance is not highly sensitive to the method of mixture reduction, provided that the

most important mixture components are retained.

(6) Wi~th continuing improvements in computing power, tracking filters which
retain more than one mixture component, such as the JAR and CAP, are practical
alternatives to the -PDAP for problems involving measurement associAtion ambiguity.
'Further work is necessary to assess the performance and computer requirements of

1ý such f 11lters, for a wider range of problems.
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-Appendix A

PROOF OF RESULTS OF SECTIONS 3 AND 4

A.1 Structure of mixture covariance

Consider any mixture distribution with pdf

N

p(x) - i- i

and let the mean of the ith component be -i and the covariance of the ith

component be P.

The mean of the mixture is defined by

X f xp(x)-

The covariance matrix of the mixture is defined by

pT

Xf - - .

,.~~X (x'rc ) d#. -'

P Y

" ••i" x ( - TBut'

-.. J .. :..d• .-
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so?

IN
pBiPi + -i-( + KX_) (A-I)

W+B

N

where W i Pi which depends on the spread of each individual component
i-I

of the mixture,
N

and B Z Ojj! x
i-I

* z- I Z I-
"- " , which dopends on the separation between

i-I.. .

copoonents.

A.2 Merging co mponento.

Suppose the reduced mixture PA(W) is tormed by mergins several comonents

of the original mixture p(3), io

p W O .1) Ep (ElQ

where p'(x) it. the new compokient formed by merging those copoifenat vith sub-

scrips from the set £.. To ensure that iA(j) is a proper pdf, the probability

mass of the nev ComIoaetat must be given by

0 A

S'i i
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If the means of p6x and PA(B) are to be equal,

i:i

Thus the mean of the new component is given by

a•

If the covariances of pA(x) and p(x) are to be equal, from (A-i)

Z + T) - -8(p' + culT + Z + . -)

Thus the covariance of the new component is given by

P1 Si( + PTke) -. a'a"
leG

A.3 Merging components result in a loss of? between component covariance

Let W and W' be the within component covariance of p(x) and pA(I)

respectively, and let B and B' be the between component covariance of p(Q)

and pA(x) respectively (see section A.1). Then since overall covariance P is

prese rved,

P V B W+ .'*B'

beftinthe matrix L as

L We .W-

L' 50' V'-

from above.

L.

'0 I ." '; :
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From sections A.1 and A.2,

Opt

- ~i ipi. T 8 UItT- 8

ice

However

i~cei iVcC

therefore L -ia HieW ad

ThsL is apositive semidefinite matrix and in this sense the Mergin& Of

Cow~xaeats results ina a loss of. bettean Cooponent Covariance.

AA. The lose of betueto c~ognent covarlante resulting ,from wergiog ttyo

Suppose that only tw~o coampoents, i. and jare gao'ed.. Thdn £roa (A-49,

th Li probability. miss of the nev copo-neat is

+

IthI se"n of the newe c .Oafnetti

~14
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and the covariance of the new component is

Ka +BP- N - +jlj

- + (.a

F A.5 The relationship between dc o a cd Lro

-j A

Con" ider

-.. T - .•/

)Jt
YL "t"

. (a,' -ei • ...

01 +.. "ei :j "(, P

itoo (2) of "tciou 4.

A.6 d- i uvarigmt akiddr oat-slituiar liuet traifo ".a tilts of x

V.
• *,,,e Cide the tt.vsf• nusoi' . .

A_ .b
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where the inverse of A exists. If

p%(x) = i;i

then under the above transformation

N

i= 1

where i =Api + b

and Qi APiAT

The distance between components i and j of p(y) is given by

2 a 3
d2 _F ýij)TQ.•)(A4

where Q is the covariance of the mixture p(y) . From the linearity of the
Texpectation operator Q APA Also

- a A(EbJJ

so on substituting into (A-A),

2 since AT(T(ATl(
d ii a + 0. (hi 4j -(i j

eA -P , thedistance measure is invariant under the

transformation (A-3).

A.7 The distance d . is bounded

From section A.3,

P - W+B - W+B' +B B',

- (W + B') + L

I•-.-•-. ..:
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where P and W are positive definite matrices, and B' and L.. are

positive semidefinite matrices.. Multiply through by P 1  to give,

*I =P P = P(W + BI) + P-

W. Taking the trace gives

n = tr P (W + B')] + tr ijL

where n is the dimentsion of the state space.

Hence since P- and (W + B') are both positive definite,

tr (W + B') > 0

and so

2•,.d . < a

Ae-

71I

r

-si-
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THE MINIMUM DISTANCE BETWEEN COMPONENTS INCREASES MONOTONICALLY AS
'REDUCTION BY THE'JOINING ALGORITHM PROCEEDS

Suppose that at some stage during mixture reduction, the closest components

have means x and X and weights a and a • The distance between these
-x y

components is dmin , where

Sd2"i = f(Oxs•y)I Ix - ZI 12
m111112

where Ix -I 112  T(x_ - 1 (K

and +.' y By/ + 08)

As they are closest, the&e components are merged to produce a new component with

mean

- 6x + ay
xy

and weight

I 68v " 8x +y *Y

Now consider any other component with mean z and weight 8 " The

* distances dXz and dyz. between this component and either of the two which have

been merged must be greater than or equal to dmin, so

d,= a< 'd 2  " f(Bor. 8 I.x - !ll2  (B-1)
•. and

•, , " • 2 d2

u -d t . (B-

To confirm that the m',inimum distance increases monotonically as reduction pro-

ceeds, ve'aust prove that

d2  ...2 ..-

d d

CoJ
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Now 1

f (awz aI2d 12

f /ato]~ I
fW I 12 2

u a,- O I X2 +- 1 1 I,lw

+, .11 -l 2 11 X 12 2I 112- f(01Z) 1 X2 +n 1.•- E 12 11 -12

"( .

ww

+• ~Since \

w z z

•. - - - = + li --

8+

and using the definition of the distance measure,

. , .+- + -

%,: 0 '(0" + ;.+ 0 i

N.z

t++J '?t
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Hence from (B-i) and (B-2)

zw B+~ Rd +(80d .)-dZW zW + Z y Z) zdmin + (Ox + az dmin_ Ozd mn

2 2

w+(~+0z+8)d 2  - 2

vw + z zn min

This completes the proof.

Y - -

• " " i.:i0
• o
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Appendix C

BAYESIAN SOLUTION OF AN UNCERTAIN TRACKING PROBLEM

C.1 'Introduction

This Appendix contains a formal statement of a tracking problem of which

an example is given in section 6. This tracking problem, which is taken from

Refs I and 3, illustrates many of the difficulties of uncertain tracking. The

purpose of this Appendix is to show that the optimal solution of the tracking

problem generates Gaussian mixture distributions and to specify the optimal

tracking filter. The recurrence relations of the JAF and CAF (see section 6.1)

are the same as the optimal filter, except that received measurements are

subjected to a coarse acceptance test and the Gaussian mixture (C-21) is approxi-

mated at each time step.

The solution of the tracking problem is approached from a Bayesian point

of view (see Refs 1 to 4). We consider the conditional pdf of the state vector

of the object at time tk , conditioned by all the information available up to

that time, This conditional pdf is a complete solution of the tracking problem.

In section C.3 it is shown that the conditional pdf is a Gaussian mixture.

Assuming the prior pdf of the state at time step k is a Gaussian mixture

and given the problem statement of section C.2, the posterior pdf, after

updating with measurements received at this time step is shown to be another

Gaussian mixture, with an increased number of components. This posterior pdf

is projected forwards to show that the prior pdf at the following time step

k + 1 is also a Gaussian mixture. Thus the solution is established by

induct ion.

C.2 Problem formulations

It is assumed that the state vector x of the object of interest evolves

according to.a linear equation

a ok + r, (C-I)

Swhere xk is the n-component state vector at time tk ,

' is the n x n state transition matrix,

r is an n x r matrix

and is an r-component vector of system driving no.se which has a Gaussian

distribution with zero mean and covariance

,0.
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E T]
E!!w]- 6i (C-2)

Here Q is a positive definite r x r matrix and 6 is the Kronecker delta.

The state vector contains the object position, and usually the velocity and

possibly other attributes of the object. Also it is assumed that at time tI
the state vector x , is known to have a Gaussian distribution with mean x
and covariance M

At every time step k (ie at each scan), a number of measurements are

received from the sensor. If Zk denotes the set of mk measurements

received at time tk , then

Zk Ekj m ,** k}

Each measurement zkj is a u-component vector. It is assumed that the object

is well inside the surveillance region of the sensor, but that the (known)

probability PD of detecting the object may be less than unity. It is also

assumed that at most one of the measurements may originate from the object.

If measurement z does originate from the object then it is related to the

state vector by the linear relationship

"Ekj a!k +-k (c-3)

where H is the u x n measurement matrix

and v is a u-component vector of measurement noise which has a Gaussian

distribution with zero mean and covariance

E XiT lk R6i A (C-4)

Here R is a positive definite u x u matrix and 6 is the Kronecker delta.
ik

A measurement which originates from the object is said to be true, while all

other measurements are false. A false measurement is asbumed to be independent

of the state vector, to have a uniform distribution over the surveillance region

of the sensor and to be independent of all present and past measurements. False

measurements are assumed to occur at an average density of p per unit area.

Further it is assumed that before examining the values of the measurements in

the set Zk *there is no information on which, if any,, of the measurements are
associated with the object. Note that if the identity of the true measurement 0

were known, the problew would reduce to that of the standard Kalman filter.
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The tracking problem is to estimate the state vector xk at each time

step, based on the available information up to and including time tk . It is

"assumed that o, r, Q, H, R, PD and p are given, together with all the

measurements.

C.3 The optimal solution

C.3.1 The prior distribution of the state vector at time tk

The prior pdf of the state vector at time tk is the pdf of xk given

all available information up to time tk but excluding the set of measurements

received at time tk. This available prior information at time tk is denoted
V k.Ik ' and this includes all measurements received at the previous time steps..

It, Z29 ..- , Zk-1.

Since any one or none of the measurements of Z. could be true, there are
'I

exactly m. + I exclusive hypotheses concerning the truth or falsehood of the
r members of Z. 'Thus the total number of possible hypotheses under 9k is

1 •

• k- I

a-_ mi+ ) . (C-5)
k I TTi

Therefore, given: ',.- possible hypotheses, the pdf of the state vector xk

iy be written

iHere - idenoleo one of :tie possible hypotheses on. the measurements avail-k-Isu S ki i
able under-k p- V i"o 'k is the pdf of x. assuming .'-rob is

~-i -*k- k-I
corractaind is given-, avid. 'Pzr .(j~ *kI lfs the probability that

'-i s correct given the information 9,
'Ntow s"pPoS that "he condi ional pdis in the ERS of. (C-.) are known to be

Gaussian$,

", , .(C -

,.,. ...)k'Ai.

* ~kV.



34 Appendix C

Also suppose that the probabilities of the hypotheses are known and are

denoted

In this case (C-6) is a fully specified Gaussian mixture pdf. Note that the

above suppositions are true for k - I

C.3.2 The posterior pdf of the state vector

The set Zk of mk measurements received at time tk is to be used to

update the prior pdf of xk specified by (C-6) to (C-8). The resulting

posterior pdf is denoted

P( yxk 1 v9k)

In the following working we shall omit P k for ease of notation, although the

dependency should be understood for all conditional probabilities and pdfs.

Thus the posterior pdf of xk will be written

After updating with the latest set of measurements, the total number of possible

hypotheses is increased to

" k-i +I,)

This increase may be viewed as a branching process where each of the °'

prior hypotheses of (C-6) may be seen as a potential track and each of these

tracks then splits into a further mk + I tracks resulting from the new set of

measurements. Thus a posterior hypothesis including the latest set of measure-

mente Zk. may be written as a joint hypothesis

~ (* (-i,wkj )

where Ikj is independent of Jrk.! i and indicates that the jth measurement

of set Zk is true (or that they are all false it k- 0). Thecomplete set of

posterior hypotheses is

i~.. 0
"1• " i* n J of ' "
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Hence the posterior of pdf of xk may be written in the form

i-1 "
!(4k) Zk z !k P(kR ij Zk)P{ ijZ'S c9

i-I j-O

First consider the posterior pdf of conditioned by Au..:

is the probability denisity resulting from updating p(~R~.l~ on the

assumption that the jth measurement from Z is true (for j # 0). In this case

!kj is the only useful measurement from Zk and the other members of Zk can

be discarded since they contain no relevant information. A true measurement zT

has a Gaussian distribution:

! Hk' R)

and the prior density of x under oi is also Gaussian given by (C-7).
k ki

Hence the required posterior density is also Gaussian and is given'by the

standard Kalman filter. So for j ÷ 0 ,

P(!kjcWlhjO Z1k) X(- "(k kio i'

where kI+ Kl~wee -kij " -ki +Kk i -Zkj " l•k•'[

K ki . k iljH•, 11,0

T -- 1

and UT + R .R

If j w 0 , none of the membors of Z are tue and so tim prior pdf is

not modified:

and 1c-111
ly t

kiO Mkk-,. 0
+ 0I,
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Now turning to the second term in the summation of equation (C-9), the

posterior probability that 7 kij is correct may be evaluated using Bayes

theorem:

Prk'~i } PzI i)rv kJ;.. I IPr{'rkj1i ' C-12)Xk'i ZkP(Zk

The equation (C-12) indicates how the prior probability Pr{'( is
modified by the observations at time tk # The posterior probability can be

found by evaluating the three factors in the numerator of the RHS of (C-12).

First consider p(Zkj1rkij), This maybe written

P ~ f7k'kjP(Zk.!kIOWkij )Lk p kB X i ! 'kj!x

(C-13)

Since the elements of Z are independent

* " TP (4914. 'kj)
Lai

A 'mcasurement z is false under Yk' if j .£ * False measurements are
-kkjuniformly distributed over the surveillance region of the sensor, and so the pdf

of a false measurement is Vk , where Vk is the volume of the surveillance

region. If j - £ , the measurement Z is true and so is a sample from the

Gaussian distribution defined by (C-3). The prior pdf of xk

)

which is the Gaussian pdf (C-7). Hence on substituting into (C-13) we obtain,

for. j 0 ,

4
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II-xd+1x_

Zvkr ij / V' j-"(-kj is Ilk i kA

Vk Ek Ck'Si

where Ski is defined in the relations (C-10). Expression (C-14) is strictly

correct only for a surveillance region of inifinite extent. However, the

truncation effect is negligible provided that, for each component of Zki , the

distance from Hxi to the boundary of the surveillance region is large compared

with the standard deviation of that component. If j - 0 so all the measure-

ments are false,

" p(zki•.io ) -* -• . (c-IS)

The second factor in the numerator of (C-12) is the prior probability of

kj

Pr{TVkjjf~ l ~~ i * k

since the hypothesis on the current set of measurements is independent of

hypotheses on measurements Zrom previous time steps. The only prior information

available is the probability PD of detecting the target and the probability of

the senaor receiving m false measurements. If false measurements are uniformly

distributed over the measurement space with density o j then it can be shown

that the probability of m fols.- measurements falling within the surveillance

region of the sensor is given by a Poisson distribution. If the volume of the

surveillance region is Vk , the probability of receiving m false wasurements

is given by

9(m) -e~ l *(-6

The hypothesis k corresponds to the event of failing to detect the target and

receiving tk false measurements. The prior probability of this occurrence is

S"*l,, (~ .'%)g(m) .(C

4. I

I 1• Il I im l ii i m km
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Any of the hypotheses TYkjo j # 0 , could correspond to the situation of detect-

ing the target and receiving mk - 1 false measurements. A priori, each of

these hypotheses is equally probable, and since there are mk of them

(for j 0)

PrIkj P~g(mk- 1)/m . (C-18)

The third factor in the numerator of (C-12) is given directly by (C-8):

PrAlrk-I i O " k-1 i " (C-19)

Substituting (C-14) to (C-19) into (C-12) we obtain

0k-1 ia ! " ki' Ski) for j ÷0
D

Pr*"ijlZk}

PD - for j 0

ak-I

where D..... +

is the normalizing denominator* This equation is of key importance because it

defines the weightings of the mixture distribution (C-9). Note that if PI a I

as in the example of section 6, kMowledge of the density o. of false masure-

menta does not contribute to the posterior pdf.

Thus the posterior pdf of Xk given by (C-9) is & fully specified

Caussian mixture. (C-9) can be rawritten as a single sum by definiag

kt. U

zk kLj

.k.. pki" ,
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and

S= lrtr ijjZ f

where I = (i - M + 1 )+ j + 1, for i 1, •o., ,- and j 0, *.e Mk

Thus

k

-Kk 7Z P(3!k Irk. Z-k)P{ 'k. zk)(C21

Lu '
where Ikt )*f'(n

P !i- I

and Pr(" t " "

The Gaussian mixnture (C-20) contains all the avalilable information on the -state

vector xk after taking account of cihe latest set of measurements Zk . Thus in

principle, the optimal ostivate based on any desired criterion -ay be obtained.

lIn particular the wlniaum mean .squareorror estimate is the wan of the

distributiont

Att

iHowver a single value of x is a so-vhat ioadtqutc u=try of a tu t -,.

,distribution, especially it that. are sigia nt well spaced coajwnears.

C.3,3 The prior pdf of the state vector itt tim tk'

To establish, by induction, the *eneral ptoporty that th• prior pdf o"
.(equation (C"6)) is a(tlly s uur, it is necessary to

jderive the vdf of from the result (C-20) This pdt "ay be derived £two

eqaton(-I (oe 9 sreinstated. here) via the propagatioa
Y.T equation (-.i) This information, together with and i .denoted J.<1 .
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S k+1 which is all the prior information available at time tk+1 . The prior

pdf of x1+ may be written

P(~+J~~k1) =I ~(C-22)

p (_Xk+lIxk ) is defined by the state propagation equations, and the second term

P( -tkVk+1) = -Yk~ '~k ) O

since the extra information on state propagation from tk to tk+l does not

contribute to the pdf of state at tk. Substituting (C-21) into (C-22) and

performing the integrations gives

n k

p(xk+1IJ~k+1 ) = PrJ4£i'.9k+1}p(xk+1takk~, 9k+,) (C-23)
k= 1

where Pr{J M k~ l OkU

and P(Xk+1IkZ, V k+1) -k 1 (xk, 1 ;k+1 Z Mk+l

with

-k+1 t

and
Mk+1 X, ' pkto' + , rTr

The pdf (C-23) is of the same form as (C-6): it is a fully specified Gaussian

mixture. Hence the initial nupposition of section C.3.! is proved by induction.

C.4 Discussion

It has been shown that the posterior pdf of the state vector, just after

incorporating the latest set of measurementso is a Gaussian mixture given by

equation (C-21). This equation is a complete descript-on tf the filter"' know-

ledge of the state vector. Each component of the mixture represents a potential

track and is a Kalman filter estimate of the state vector based on a poss•-ble

-history of true and false measurements# At time tk the nk cocTponentsk C)
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represent all feasible track histories. The weighting k is the probability

that track history k is the correct one.

For most interesting cases, the number of components nk becomes very

large with increasing k (see (C-21)). Since every component must be

propagated at each time step, implementation of the optimal solution is

impractical, hence the need for the reduction algorithms which are the subject

of this Report.

0&NI,

:AA
Ik

i"
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Appendix D

THE COARSE ACCEPTANCE CASE

A coarse acceptance test is applied to the sensor measurements to reject

any hypothesis that appears to be very unlikely on the basis of prior informa-

tion. This test is computationally inexpensive as the unlikely hypotheses are

rejected before their corresponding posterior mixture components need be

evaluated. Hopefully the effect of this acceptance test on the posterior

distribution will be insignificant. The mixture reduction algorithm is applied

after the posterior mixture distribution has been compiled.

Each component of the posterior pdf of the state vector is generated by

updating a feasible track from the prior pdf with either a received measurement,

or by prediction on the assumption tbat all received measurements are false

(see Appendix C, section C.3.2). Consider the prior track, or component i of

(C-6), that corresponds to hypothesis - . Under hypothesis A'kij

(Q 0 0), measurement zkj is true and is used to update prior component i

From (C-14), the prior pdf of z under ''V (j 0) is given by
-kj kij

kj ki' Ski)

From knowledge of this distribution, an acceptrnce or validation region in the

measurement space may be defined, such that under hypothesis Xk-1 i p the

probability of the true measurement falling outside the region is very small.

(This type of acceptance test is commonly applied to measurement-track associa-

tion problems where ambiguities may exist - see Refs 2, 9 and 11.) If the

validation region is chosen so that the probability density of the true

measurement at any point within the region exceeds that at all points outside

the region, then the acceptance region is bounded by a hyperellipsoid. Thus a

measurement z is accepted for updating hypothesis 40- if and only if

.k-
k#Jj k-1~J 1 *(1

-Note that since the false measurements have a uniform distribution, this is
equivalent to subjea~ing each measurement to a likelihood ratio test. Por a

true measurement a , under hypothesis1 , the LHS of (D-1) is a sazple

from a " distribution with degrees-of-freedom equal to the dimension of z
Irus the value of TA corresponding to a probability u of missigg .the true -.

A 

5
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"measurement (if the object is detected and - is correct) may be obtained

2 k- i
from tables of X* In the simulation of section 6, a is set to 0.001, which

corresponds to T = 13.82 for two-dimensional measurement space. Note that a
A

different acceptance region must be defined for each component of (C-6). To
take account of the possibility of rejecting the true measurement, the detec-

tion probability PD should be replaced by PD(0 - a) . Thus even if P ,

a component is generated for the finite probability of missing the true
measurement,

A t

!P

tI

'0

•....-
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